Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Cancer Biotherapy ; (6): 595-599, 2009.
Article in Chinese | WPRIM | ID: wpr-404944

ABSTRACT

Objective:To construct a mutant D314A of Escherichia coli cytosine deaminase (EC-CD, substitution of an alanine (A) for the aspartic acid (D) at position 314 of cytosine deaminase) and investigate its antitumor effect. Methods: Eukaryotic expression plasmid containing EC-CD gene (pcDNA3.1-CD~(wt)) was constructed, and the mutant pcDNA3.1-CD~(D314A) plasmid, with aspartic acid (D) at position 314 of EC-CD gene substituted by alanine (A) (EC-CD~(D314A)), was established by site-directed mutation. EC-CD~(wt) and EC-CD~(D314A) were transfected into human colon cancer cell line LoVo via Lipofectamine~(tm) 2000, and positive LoVo-CD~(wt) and LoVo-CD~(D314A) cells stably expressing corresponding genes were selected by G418. The cytotoxicity and bystander effects of EC-CD and EC-CD~(D314A) genes on LoVo cells were e-valuated by MTT assay. Results: The mutant D314A was confirmed by sequence analysis. EC-CD and EC-CD~(D314A) mRNA were expressed after transfected into LoVo cells. The IC_(50) of Lovo-CD~(D314A) cells was (85.13±0.60) mmol/L, which was significantly lower than that of LoVo-CD~(wt) cells ([689.76±0.45] μmol/L, P=0.000). Bystander effect assay showed that, when at the ratio of 30%, the survival rates of LoVo-CD~(wt) cells and Lovo-CD~(D314A) cells were (48.5±0.49)% and (17.3±0.40) % (P = 0.000), respectively. Conclusion: Mutatant EC-CD gene (EC-CD~(D314A)) has a significantly in-creased antitumor effect on LoVo cells compared with wild type EG-CD gene, and it may become a new candidate gene for tumor gene therapy.

SELECTION OF CITATIONS
SEARCH DETAIL